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Abstract Consider the interaction between a horizontal thin liquid film and a reaction–diffusion process on the
surface of the film. The reaction–diffusion process is modeled by the bistable/excitable FitzHugh–Nagumo proto-
type, a system of two equations for the evolution in time and space of two species, the activator and inhibitor. It
is assumed that one of the species, the inhibitor, acts as a surfactant and the coupling between hydrodynamics and
chemistry occurs through the solutocapillary Marangoni effect induced by spatial changes of the inhibitor’s con-
centration. The coupled system is analyzed with a long-wave expansion of the hydrodynamic equations of motion,
transport equations for the two species and wall/free-surface boundary conditions. Depending on the values of the
pertinent parameters, the bistable/excitable medium can induce both periodic stationary patterns and solitary waves
on the free surface.

Keywords Hydrodynamic effects induced by chemical-wave propagation · Reaction–diffusion processes ·
Surfactants · Thin-film flows

1 Introduction

The role of surface-tension gradients (Marangoni effect) as a cause of interfacial instabilities has been established
by the pioneering studies of Pearson [1] and Sternling and Scriven [2]. Such gradients are due to either a spatially
inhomogeneous temperature field (thermal Marangoni effect) or the presence of surface-active agents (surfactants)
that alter the surface tension (solutal Marangoni effect).

In the context of free-surface thin liquid films, a great deal of theoretical work has been devoted to the influence
of surface-tension variation on the evolution of the free surface (see [3–5] for reviews). Thermocapillarity studies
include the dynamics of a liquid film flowing down a planar substrate heated either uniformly [6–12] or by a local
heat source [13–15] and the evolution of an horizontal thin liquid film heated uniformly from below [16–19]. The
associated problem of solutocapillarity has similarly received considerable attention. For example, De Wit et al.
[20] examined in detail the stability of free thin liquid films in the presence of insoluble surfactants and long-range
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attractive van der Waals interactions. Schwartz et al. [21] and Weidner et al. [22] investigated the role of surfactants
on the leveling of thin liquid layers and correcting defects in corners, while Matar and Troian [23] scrutinized the
effect of Marangoni stresses on the spontaneous spreading of insoluble surfactant monolayers on thin liquid films.

The vast majority of theoretical developments in free-surface thin-film flows has largely ignored the presence
of chemical reactions that might take place within the film, on the free surface of the film or at the solid substrate.
An early exception is the study by Pismen [24] who showed the formation of stationary patterns of convection and
chemical activity due to a chemical reaction in a film with a free surface. The chemical system was an autocatalytic
reaction for a single chemical species. We also note the study by Galez et al. [25] who provided a detailed description
of the influence of a surface chemical reaction on the dynamic behavior of a thin liquid film in the presence of
surface-tension gradients induced by the chemical reaction affecting insoluble surfactants. They examined the linear
stability of the flat-film solution and they showed that the chemical kinetics can profoundly affect the dynamics
of the film leading to oscillatory solutions absent in the pure hydrodynamic model for the free surface. They also
presented numerical solutions of the free-surface evolution equation that demonstrate both oscillations and rupture.

More recently Trevelyan et al. [26] and Trevelyan and Kalliadasis [27,28] examined the evolution of a vertically
falling film in the presence of a simple first-order exothermic chemical reaction. The reactive species is absorbed
from the surrounding gas into the liquid where the chemical reaction takes place. The heat released/absorbed by the
reaction induces a thermocapillary Marangoni effect which, in turn, affects the interface, fluid flow and absorption
characteristics of the film. It was demonstrated that an exothermic reaction has a stabilizing influence on the free
surface. Bifurcation diagrams for permanent solitary waves were constructed and time-dependent computations
showed that the system always approaches a train of coherent structures that resemble the (infinite-domain) solitary
pulses. It was further shown that the presence of chemical reactions can have a dramatic effect on the evolution of the
interface and in fact can make the solitary waves dispersive. The size of dispersion was found to depend on the size
of the Prandtl and Schmidt numbers while its sign could change from positive to negative leading to negative-hump
solitary waves. For large dispersion and for a sufficiently large region of Reynolds numbers, the liquid layer can
be excited in the form of nondissipative waves which close the criticality assume the form of Korteweg–de Vries
solitons.

A related line of research studies the droplet motion caused by chemical reactions at the solid substrate under-
neath the droplet that produces a driving wettability gradient [29–31]. This system has been recently described by
dynamical models combining a free-surface thin-film equation and a reaction–diffusion equation for the adsorbate
at the substrate [32,33] (see also the simple model developed in [34]).

In this study, however, we focus on surface waves on thin films of thicknesses that are everywhere well above
100 nm and thus we exclude the problem of moving contact lines that enters the description of moving droplets.
More specifically, we investigate the dynamics of an horizontal thin liquid film in the presence of insoluble reactive
surfactants on the free surface of the film. This allows us to analyze the interplay between reaction, diffusion and
fluid flow using a model derived with a long-wave (lubrication) approximation [4]. For the reaction–diffusion pro-
cess we shall adopt the FitzHugh–Nagumo (FHN) equations [35,36] as a model system. FHN typically consists of
two variables, the ‘inhibitor’ and the ‘activator’, and represents a generic model of dissipative structures in excitable
and bistable media. Excitable media are non-equilibrium extended systems having a single uniform steady state
that is linearly stable but susceptible to finite-size perturbations. Depending on the form of these perturbations,
nonlinear wave patterns can be triggered such as solitary pulses. On the other hand, bistable systems possess two
stable uniform steady states and fronts connecting the two are likely to propagate in them. Hence the FHN model
has a much richer dynamics than the simple kinetic schemes employed in [25–28].

In the model presented here the FHN system induces a Marangoni flow. For simplicity we assume that this flow
is due to the fact that one of the chemical species, the inhibitor, acts as a surfactant. The coupling between the
thin-film hydrodynamics and reaction–diffusion events then occurs through the Marangoni stresses induced by the
reactive surfactant. As there is no body force, hence no mean flow, any hydrodynamic flow/wave pattern on the
film surface is driven purely by the reaction–diffusion events. Hence, with the exception of the vertical length scale,
which evidently should be defined by the unperturbed film thickness, the characteristic length/time scales, and as a
result velocity scales, for the coupled system are determined by the inhibitor. In other words, the typical length/time
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scales of the interfacial waves and of the inhibitor waves are of the same order. Since thin liquid films typically
evolve in slow time/space scales, both film thickness and inhibitor are ‘long-wave’ variables.

Hence the situation here is dramatically different to the reactive falling-film problem examined in [26–28]. Indeed
in these studies, the flow is due to gravity and the dynamics is driven by the hydrodynamics with the chemical reac-
tion playing effectively a secondary role and being ‘slaved’ to the hydrodynamics. While the coupling between the
fluid flow and the chemical reaction is non-trivial and indeed can lead to some interesting spatio–temporal behavior,
such as converting the dissipative solitary pulses on a non-reactive film to non-dissipative ones, it is the mean flow
due to gravity, viscous forces and the streamwise curvature gradient which are responsible for the existence of
solitary pulses on the surface of the film in the first place. It is exactly for this reason that the characteristic time,
length and velocity scales in [26–28] were based on the hydrodynamics.

As mentioned earlier the interplay between hydrodynamics, reaction and diffusion is analyzed within the context
of the long-wave approximation. Taking the ratio of the unperturbed film thickness to the horizontal length scale
defined by the bistable/excitable medium as a small (long-wave) parameter, allows us to utilize a long-wave expan-
sion of the reaction–diffusion–convection equations and associated free-surface boundary conditions to obtain a set
of three coupled nonlinear partial differential equations for the evolution of the local film thickness and concentra-
tions of the two species.

A linear stability analysis of these equations demonstrates that the interplay between hydrodynamics and reac-
tion–diffusion process is not trivial. In the absence of the Marangoni effect, the free surface is linearly stable.
However, it can be destabilized when it is coupled to the reaction–diffusion process and in the region where the
reaction–diffusion process is linearly unstable. For the parameter values examined here, this instability leads to a
spatially periodic stationary pattern on the free surface.

The remainder of our study focuses on the existence of nonlinear hydrodynamic traveling waves excited by
the reaction–diffusion process. In the absence of convection there exist traveling reaction–diffusion waves which
assume the form of fronts or pulses. We demonstrate that traveling waves exist also for the coupled thin-film/reac-
tion–diffusion system. These waves take the form of fronts/pulses for the bistable/excitable medium, respectively,
and pulses for the free surface. Finally, we construct bifurcation diagrams for the speed of the traveling waves as a
function of the Marangoni number.

2 Problem definition

We consider a thin liquid film of viscosity µ, surface tension σ and density ρ on an horizontal planar substrate. We
restrict ourselves to the one-dimensional problem. A Cartesian coordinate system (x, y) is chosen so that x is in the
direction parallel to the substrate and y is the outward-pointing coordinate normal to the substrate. The substrate
is then located at y = 0 while y = h(x, t) denotes the location of the interface. The governing bulk equations are
conservation of mass and the Navier–Stokes equations of motion,

ux + vy = 0 (1a)

ut + uux + vuy = − 1

ρ
px + ν(uxx + uyy) (1b)

vt + uvx + vvy = − 1

ρ
py + ν(vxx + vyy) − g, (1c)

where u and v are the horizontal and vertical components of the velocity field, respectively, and p is the liquid
pressure. g is the gravitational acceleration and ν = µ/ρ is the kinematic viscosity.

On the wall we have the usual no-slip/no-penetration boundary condition,

u = v = 0, on y = 0, (2)

and on the interface y = h(x, t) the kinematic boundary condition and the normal and tangential stress balances,

v = ht + uhx (3a)
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1

ρ
(p − p0) + 2ν

1 + h2
x

[
−(h2

x ux + vy) + hx (uy + vx )
]

= −σ

ρ

hxx

(1 + h2
x )

3/2 (3b)

−2νhx (ux − vy) + ν(1 − h2
x )(uy + vx ) = (1 + h2

x )
1

ρ

(
dσ

ds

)
, (3c)

where s is an arclength coordinate along the interface and p0 is the pressure of the ambient gas phase above the
liquid film. The surface-tension gradient in (3c) is due to the presence of insoluble surfactants on the interface. These
surfactants are involved in a reaction–diffusion process. Notice that, as is typically the case with the Marangoni
effect, we assume that the variation of surface tension will not influence the normal stresses on the interface; the
surface-tension gradient, however, will create a finite tangential stress at the interface.

As a model system for the reaction–diffusion process we adopt the FHN equations discussed in Sect.1. In the
absence of fluid flow, the FHN transport equations are written in the following dimensional form,

ζt = Dsζ ζxx + kζ (ζ − b′
2ζ

3 − b′
1ξ), (4a)

ξt = Dsξ ξxx + kξ (ζ − a′
1ξ − a′

0), (4b)

which is a system of two partial-differential equations for the evolution in time and space of two variables: ζ ,
referred to as the ‘activator’, and ξ , referred to as the ‘inhibitor’. The accumulation of ζ, ξ is due to two effects:
molecular diffusion in the streamwise direction and generation/consumption by the chemical reaction (first and
second terms in the right-hand side of Eqs. 4a, b, respectively). In the absence of diffusion, increasing ζ increases
the accumulation of both ξ and ζ while increasing ξ lowers them, hence the terms ‘activator/inhibitor’. For excitable
media the ratio kζ /kξ is large [35] and ζ, ξ are also referred to as ‘fast, slow variables’, respectively. The FHN
system in (4) is parameterized by eight parameters: the surface-diffusion coefficients Dsζ and Dsξ , the reaction-rate
constants kζ and kξ and the kinetic parameters a′

0, a′
1, b′

1 and b′
2. With the exception of a′

0, all these parameters are
positive [36].

Let us now include the effect of convection on the FHN model in (4). The two species are assumed to be insoluble,
i.e., they remain on the interface and do not diffuse into the bulk. The derivation of the basic convective–diffusion
equation that governs the transport of a non-reactive insoluble species along a deforming interface is given e.g. in
[37,38]. Note that the FHN model is actually obtained after a lengthy reduction process of a rather complex initial set
of equations [39]. Accordingly, ζ and ξ represent combinations of concentrations of the original high-dimensional
model and only remotely correspond to the initial physical variables. As a consequence, Eqs. 4a, b admit negative
values for ζ and ξ . Notice, for instance, the symmetry (ζ, ξ) → (−ζ,−ξ), if a′

0 = 0.
Nevertheless, we can assume that we have two actual chemical species: imagine a physical experiment that

records the variation of two concentrations � and Z at steady state and in the absence of diffusion. One set of
steady states is found to be described by the equation Z − ζ ′

m − b′
2(Z − ζ ′

m)3 − b′
1(� − ξ ′

m) = 0 which has an
inflection point at (ζ ′

m, ξ ′
m) in the (Z , �)-plane. The quantities ζ ′

m and ξ ′
m are defined by the chemical system. The

transformation ζ = Z − ζ ′
m and ξ = � − ξ ′

m then shifts the inflection point to the origin of the (ζ, ξ)-plane. In this
plane the steady states are given by ζ − b′

2ζ
3 − b′

1ξ = 0 which is the same with setting the right-hand side of Eq. 4a
equal to zero (in the absence of diffusion). ζ and ξ now represent deviations from ζ ′

m and ξ ′
m while Z = ζ + ζ ′

m
and � = ξ + ξ ′

m are always positive since they correspond to concentrations of actual chemical species (obviously
the steady-states curve in the (Z , �)-plane should not cross the Z = � = 0 axes). Ensuring positivity for Z and �

is essential if these variables are to describe species transported by the flow.
The transport equations in the presence of convection for the two species overall concentration, ζ ′

m + ζ and
ξ ′

m + ξ , can then be obtained by a straightforward extension of the convection–diffusion equation given in [37,38]
to account for the presence of a chemical reaction which simply adds to the right-hand sides of the equations the
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source terms due to the chemical reaction:

ζt + uζx + ζ ′
m + ζ

1 + h2
x

[
(ux + hxvx ) + hx (uy + hxvy)

]

= Dsζ
1√

1 + h2
x

(
ζx√

1 + h2
x

)

x

+ kζ (ζ − b′
2ζ

3 − b′
1ξ), (5a)

ξt + uξx + ξ ′
m + ξ

1 + h2
x

[
(ux + hxvx ) + hx (uy + hxvy)

]

= Dsξ
1√

1 + h2
x

(
ξx√

1 + h2
x

)

x

+ kξ (ζ − a′
1ξ − a′

0). (5b)

The first two terms in the left-hand sides of these reaction–diffusion–convection equations account for the material
time derivative of the concentration fields relative to the flow and the third term is due to the stretching of the
interface. The first terms in the right-hand sides originate from the molecular diffusion terms of the FHN model
in (4) appropriately modified to account for diffusive motion along a deformable interface and the last terms are
simply source contributions originating from the kinetic terms of the FHN model in (4). Setting ζ ′

m = ξ ′
m = 0

in (5) corresponds to the case of ζ, ξ being reduced variables representing combinations of concentrations of a
higher-dimensional model and not actual chemical species, as discussed earlier.

The interaction between the fluid flow and the excitable medium takes place in two ways. On the one hand,
the flow changes the distribution of the species at the film surface by convection. On the other hand, the excitable
medium acts upon the surface through the surface tension. The system is hence closed with a constitutive equation
that expresses the variation of surface tension as a function of the species concentration. We assume that only
one of the two species, the inhibitor, acts as a surfactant and alters the surface tension. This allows a substantial
simplification of the problem. The solutocapillarity effect is modeled by using a linear approximation for the surface
tension as a function of surfactant concentration,

σ(ξ ′
m + ξ) = σ0 − γ ξ (6)

where σ0 = σ(ξ ′
m) and γ > 0 for typical liquids.

3 Scalings and dimensionless equations

The vertical lengthscale h∗ is determined by the hydrodynamics. Hence, if h0 denotes the flat-film thickness, then
h∗ = h0. On the other hand, the horizontal length scale �∗ is set by the reaction–diffusion process that drives
the hydrodynamics, more specifically the inhibitor ξ which after all is the variable that affects the hydrodynamics
through the Marangoni effect. Similarly, the characteristic velocity u∗ in the horizontal direction is also defined by
ξ . Hence, the characteristic time scale is taken as �∗/u∗. We then introduce the non-dimensionalization

x → h∗x/η, y → h∗y, t → �∗t/u∗, (7a)

u → u∗u, v → ηu∗v, h → h∗h, p → p0 + (ρνu∗�∗/h∗2
)p, (7b)

ζ → ζ ∗ζ, ξ → ξ∗ξ. (7c)

where

η = h∗/�∗ (7d)

is the ratio of vertical and lateral length scales and the characteristic scales are given by

u∗ = √
Dsξ kξ ζ ∗/ξ∗, ζ ∗ = 1/

√
b′

2, ξ∗ = ζ ∗/b′
1, (8a)
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�∗ = √
(Dsξ ξ∗)/(kξ ζ ∗), h∗ = h0. (8b)

In terms of the above non-dimensional variables, the equations of motion and continuity equation (1) become,

ux + vy = 0, (9a)

ηRe(ut + uux + vuy) = −px + η2uxx + uyy, (9b)

η3Re(vt + uvx + vvy) = −py + η4vxx + η2vyy − Bo, (9c)

subject to the wall boundary conditions,

u = v = 0 on y = 0, (10)

and the dimensionless versions of the interfacial boundary conditions in (3):

v = ht + uhx , (11a)

p + 2η2

1 + η2h2
x

[
(1 − η2h2

x )ux + hx (uy + η2vx )
]

= −(We − η2Maξ)
hxx

(1 + η2h2
x )

3/2 , (11b)

−4η2hx ux + (1 − η2h2
x )(uy + η2vx ) = −

√
1 + η2h2

x Ma ξx . (11c)

On the interface we also have the dimensionless versions of the transport equations for the species ξ, ζ in (5):

ζt + uζx + ζm + ζ

1 + η2h2
x

[
(ux + η2hxvx ) + hx (uy + η2hxvy)

]

= 1

δ

(
ζxx

1 + η2h2
x

− η2ζx hx hxx

(1 + η2h2
x )

2

)
+ K (ζ − ζ 3 − ξ), (12a)

ξt + uξx + ξm + ξ

1 + η2h2
x

[
(ux + η2hxvx ) + hx (uy + η2hxvy)

]

= ξxx

1 + η2h2
x

− η2ξx hx hxx

(1 + η2h2
x )

2 + (ζ − a1ξ − a0). (12b)

The governing dimensionless parameters are,

Re = u∗h∗

ν
, Bo = η

gh∗2

νu∗ , We = η3 σm

ρνu∗ , Ma = η
γ ξ∗

ρνu∗ , (13a)

δ = Dsξ

Dsζ
, K = ξ∗

ζ ∗
kζ

kξ

, ζm = ζ ′
m

ζ ∗ , ξm = ξ ′
m

ξ∗ , a0 = a′
0

ζ ∗ , a1 = a′
1
ξ∗

ζ ∗ , (13b)

with Re the Reynolds number, Bo the Bond number, We the Weber number and Ma the Marangoni number. The
remaining six parameters in (13b) are related to the excitable medium only.

Equations 11c and 12 show that the coupled hydrodynamic-FHN system has a feedback mechanism. The key
for this mechanism is convection: ξ affects the hydrodynamics through the Marangoni term in the tangential stress
balance and the hydrodynamics in turn changes both ξ and ζ through convection in the left-hand sides of the
transport equations (12).
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4 Long-wave equations

The complexity of the free-boundary problem developed in the preceding section for the evolution of a thin film
coupled to the FHN model can be removed by invoking a long-wave analysis of the equations of motion and asso-
ciated wall/free-surface boundary conditions. A detailed review of the long-wave approximation in the absence of
chemical reactions is given by Oron et al. [4]. The basic assumption is that the ratio η of the mean film thickness
(∼ h0) to the characteristic wavelength of any waves on the free surface is small. This allows an asymptotic
reduction of the governing equations and associated boundary conditions to a single highly nonlinear partial
differential equation of the evolution type formulated in terms of the local film thickness h. For surfactant-driven
thin film flows the free-surface evolution equation has been derived in [38,40,41].

The basic assumption here is that both ξ and h are long-wave variables. We outline the main steps of the long-
wave expansion. We assume that Bo, We and Ma are at most of O(1) with respect to η. Re is also assumed to
be at most of O(1) (lubrication approximation). The relative order of magnitude between δ, K and η need not be
specified. The pressure field and streamwise velocity field at O(1) are found to be,

p = Bo(h − y) − Wehxx , (14)

u = (Boh − Wehxx )x y(y − 2h)/2 − Maξx y, (15)

respectively, and the Reynolds number does not appear at this level of approximation. The v-velocity is then easily
obtained from (9a) and (10). Substituting u and v in the kinematic boundary condition (11a) and u into the leading-
order versions of the transport equations (12) then yields a set of three partial differential equations for the evolution
in time and space of the three surface fields h, ζ , and ξ :

ht =
(

1

3
Boh3hx − 1

3
Weh3hxxx + 1

2
Mah2ξx

)

x
, (16a)

ζt =
(

1

2
Boh2(ζm + ζ )hx − 1

2
Weh2(ζm + ζ )hxxx + Mah(ζm + ζ )ξx

)

x
+ 1

δ
ζxx + K (ζ − ζ 3 − ξ), (16b)

ξt =
(

1

2
Boh2(ξm + ξ)hx − 1

2
Weh2(ξm + ξ)hxxx + Mah(ξm + ξ)ξx

)

x
+ ξxx + ζ − a1ξ − a0. (16c)

This system shows the couplings between the three variables h, ζ and ξ . These couplings are due to the Marang-
oni effect and convection: h affects both ζ and ξ through the convective flow terms in the right-hand sides of the
reaction–diffusion–convection equations (16b, c). Note that, even for a non-deformable interface, i.e., h = 1, there
is still a convective flow in Eqs. 16b, c due to the Marangoni effect that induces an interfacial velocity, −Maξx h,
in this case (Eq. 15). ζ and ξ are of course coupled to each other through the FHN kinetic terms while ξ affects h
through the Marangoni term in (16a) (the coupling between h and ζ is indirect through ξ ).

5 Linear stability analysis

We now consider the linear stability of the trivial solution [h, ζ, ξ ] = [1, ζ0, ξ0] where ζ0 and ξ0 are given from

ζ0 − ζ 3
0 − ξ0 = 0, (17a)

ζ0 − a1ξ0 − a0 = 0. (17b)

In the (ζ0, ξ0)-plane (17a) forms an S-type curve and (17b) a straight line. Depending on the values of a0 and a1,
there may be one to three intersections between the two curves corresponding to one to three spatially uniform
steady states, a well known result for the FHN model [36].
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Linearizing Eq. 16 about the chosen steady state and substituting the usual normal mode ∼ exp {λt + ikx} in the
linearized equations, yields the dispersion relationship

λ3 + Pλ2 + Qλ + R = 0 (18)

for the complex growth rate λ as a function of wavenumber k, with

P = Kβ + k2

δ
+ (M + 1)k2 + a1 + k2

3
(Bo + Wek2), (19a)

Q =
(

Kβ + k2

δ

)[
(M+1)k2 + a1

]
+ K + αMk2+ k2

3
(Bo + Wek2)

[
Kβ +

(
1

δ
+ M

4
+ 1

)
k2 + a1

]
, (19b)

R = k2

3
(Bo + Wek2)

{(
Kβ + k2

δ

)[(
M

4
+ 1

)
k2 + a1

]
+ K + 1

4
αMk2

}
, (19c)

where

α = ζm + ζ0

ξm + ξ0
, β = 3ζ 2

0 − 1, and M = (ξm + ξ0)Ma. (19d)

If all parameters in (19a–d) are strictly positive, P > 0, Q > 0 and P Q > R. According to the Routh–Hurwitz
criterion then, the real parts of all three roots of (18) are strictly negative and the corresponding uniform steady
state is linearly stable. The reactive surfactants then act in a similar fashion to non-reactive ones: a classical linear
stability analysis of an horizontal thin film in the presence of (non-reactive) surfactants shows that surfactants have
a stabilizing influence on the film [42]. In this case Ma > 0. A destabilization of the whole system can then occur
if Ma < 0, i.e., γ < 0 or the values of ζm and ξm are such that α and/or M are negative (indeed although surface
tension typically decreases with concentration there are special systems which are known to display the opposite
behavior).

Another possibility that we will examine in detail here is the case β < 0. Since β is merely the opposite of the
derivative of the function ξ0(ζ0) given by Eq. 17a, the steady state in this case is located on the inner branch of
the S-type curve defined by Eq. 17a. Let us set a0 = 0 and focus on the state h = 1, ζ0 = 0 and ξ0 = 0 which is
always a spatially uniform steady solution of the system independently of the value of a1. In that case, β = −1.
When Ma = 0, the hydrodynamic system is decoupled from the FHN equations and the equation for the dispersion
relationship in (18) can be factorized:
[
λ + k2

3
(Bo + Wek2)

] [
λ2 +

(
Kβ + k2

δ
+ k2 + a1

)
λ +

(
Kβ + k2

δ

)
(k2 + a1) + K

]
= 0, (20)

where the first factor corresponds to h and the second factor accounts for the chemical system. The solid lines
in Fig. 1 show λ as a function of k—for the parameter values chosen λ is real. One of the roots (marked as 1)
corresponds to h and two of the roots correspond to the chemical system (marked as 2 and 3). The thin film is
linearly stable while the chemical system is linearly unstable as can be deduced directly from Eq. 20. The two
reaction–diffusion modes (curves (2a) and (3a) in the figure) exhibit a strictly positive growth rate for k = 0.
Furthermore, the phase velocities for all modes vanish.

Increasing now the Marangoni number to 8 will change the location of the dispersion curves with the exception
of curve (3a) which only moves slightly so that (3b) is effectively on top of (3a). The new set of curves shown with
the dashed lines in Fig. 1 is qualitatively similar to that obtained for Ma = 0: in all cases we have one linearly
stable mode and two linearly unstable modes with a finite band of unstable modes extending from k = 0 up to a
critical wavenumber above which they are stable, and the growth rate for k = 0 remains unaltered. The Marangoni
effect shrinks the range of unstable modes for dispersion curve (2). It has a small influence, however, on the stability
characteristics of the remaining two curves.

Since all three variables are coupled for Ma �= 0, the two unstable growth rate curves in Fig. 1 lead to an instability
for all three variables. Hence, despite the fact that the free surface is linearly stable for Ma = 0, its coupling to the
linearly unstable reaction–diffusion system through the Marangoni effect leads to its destabilization. Figure 2 shows
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Fig. 1 Dispersion curves
for K = 10, δ = 1, ζm = 1,
ξm = 1, a0 = 0, a1 = 0.5,
Bo = 1, and We = 1. Two
different values of the
Marangoni number have
been used: Ma = 0
((1,2,3a)-solid lines) and
Ma = 8 ((1,2,3b)-dashed
lines). Inset: enlarged view
of the dispersion curves
close to λ = 0. As the
Marangoni number
increases, the range of
unstable modes decreases
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the development of a spatially periodic steady state for the free surface. The pattern emerges from the flat film for
Ma = 0 and grows as Ma increases. The profiles for the three fields have been constructed numerically using the
continuation software AUTO97 [43]. This stationary spatially periodic state might be unstable in time-dependent
computations and hence we refrain from calling it a ‘Turing pattern’. Such computations are beyond the scope of
the present study.

Interestingly, although ξ diminishes as Ma increases, h which is coupled to ξ through the Marangoni effect, is
amplified. This is because the maximum value of |Maξx | in the domain increases as Fig. 2c indicates. Indeed, it is
Maξx that affects the evolution of the free surface (see (16)) and clearly the Marangoni effect has the maximum
possible influence when |Maξx | is maximum.

Note that ξ has a local minimum and maximum corresponding to a local maximum/minimum, respectively, for
the surface tension. This then triggers an interfacial tangential stress from the right to the left thus causing convective
flow and free-surface deformation. This flow is in turn causing a convective transport of surfactants from the right
to the left reducing the concentration of the surfactants. As we pointed out earlier the coupled thin film-FHN system
has a feedback mechanism driven by convection: for the situation depicted in Fig. 2, ξ causes the flow and the flow
homogenizes ξ .

6 Hydrodynamic traveling waves driven by FHN traveling waves

We now seek traveling wave solutions propagating at a constant speed c. Transforming Eq. 16 to a frame moving
with speed c, z = x −ct and ∂/∂t = −c∂/∂z, converts (16) to a set of ordinary differential equations parameterized
by c. This is effectively a nonlinear eigenvalue problem for c and can be written as an 8th-order dynamical system.

Although the spatially uniform steady states located in the outer branches of the S-type curve of Eq. 17a in the
(ζ, ξ)-plane (i.e., β > 0) are linearly stable when M > 0 and α > 0, there still exist traveling waves connecting
these states [35,36]. Such waves typically assume the form of fronts or pulses, depending on the values of the
reaction–diffusion parameters and they have been analyzed using elements from dynamical systems theory, e.g., a
pulse corresponds to a homoclinic orbit connecting a stable fixed point (of the saddle node type) of the associated
dynamical system.

Such reaction–diffusion fronts/pulses can also excite hydrodynamic traveling waves through finite-amplitude
bifurcations even though the coupled thin-film/reaction–diffusion system might be linearly stable. Such finite-
amplitude bifurcations lead to pulses on the surface of the film (homoclinic bifurcations). A detailed analysis of
these waves using elements from dynamical systems theory is beyond the scope of the present study.

Typical free-surface waves with solitonic features are shown in Figs. 3 and 5, excited by fronts and pulses,
respectively, of the bistable/excitable medium. These solutions have been constructed numerically using also the
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Fig. 2 Spatially periodic
stationary pattern over one
period; (a) free-surface
profile for different values
of the Marangoni number:
Ma = 0, 2, 4, 6 and 8. The
values of the remaining
parameters are given in Fig.
1; (b) corresponding
profiles of ζ (solid lines)
and ξ (dashed lines); (c)
corresponding profile for
Maξx . The arrows point to
the direction of increasing
Ma
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continuation software AUTO97 [43]. Interestingly the shape of the free-surface solitary waves is similar to that
obtained in falling liquid films [8,10,11] and consists of a primary solitary hump preceded by a series of small bow
waves at the front (for large values of Ma the bow waves are very small compared to the primary hump).

In the front regime, increasing the Marangoni number amplifies the maximum amplitude of the free-surface
solitary waves. This results in a smoother front for the bistable medium with the exception of the activator that
develops a pronounced dimple at the front. Figure 4 shows the bifurcation diagram for the velocity c as a function
of Ma in the front case. Notice that the interplay between the flow and the bistable medium leads to an initial
deceleration of the waves followed by acceleration as Ma increases further.
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Fig. 3 Traveling waves of
the coupled thin film-FHN
system for K = 10, δ = 1,
ζm = 1, ξm = 1, a0 = 0.1,
a1 = 2.0, Bo = 1 and
We = 1; (a) Free-surface
solitary waves excited by
FHN fronts for Ma = 0−10
in steps of 1. The arrows
point in the direction of
increasing Ma; (b)
corresponding
reaction–diffusion fronts for
ζ (solid lines) and ξ (dashed
lines)  0.95
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In the pulse regime, increasing the Marangoni number again amplifies the maximum amplitude of the solitary
waves and results in a smoother wave for the excitable medium with the exception of the activator whose depression
at the back of the primary pulse deepens slowly as it moves to the left. Figure 6 depicts the corresponding bifurcation
diagram for the velocity c as a function of Ma. Now the velocity is a monotonically increasing function of Ma while
for the parameter values examined here pulses travel faster than fronts.

7 Conclusions

The coupling between bistability/excitability and diffusion can lead to a wide range of wave-propagation phenomena
such as traveling fronts and pulses. Not surprisingly, therefore, bistable/excitable media have been used frequently
as model systems in a wide variety of chemical and biological problems. Here we analyzed the interaction between
an horizontal thin liquid film and a bistable/excitable medium on the surface of the film. The thin film and the
bistable/excitable medium were coupled through a solutal Marangoni effect induced by one of the two chemical
species, the inhibitor.

By utilizing a long-wave approximation of the equations of motion, transport equations of the two species and
associated wall/free-surface boundary conditions, we obtained a set of three coupled nonlinear partial differential
equations for the evolution in time and space of the free surface and the concentrations of the two species. These
equations account for the Marangoni effect as well as the effect of convection on the reaction–diffusion process.
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Fig. 5 Traveling waves of the coupled thin film-FHN system
for K = 100, δ = 1, ζm = 0, ξm = 0, a0 = −0.5, a1 = 1.0,
Bo = 1 and We = 1; (a) free-surface solitary waves excited
by FHN pulses for Ma = 0−10 in steps of 1. The arrows
point in the direction of increasing Ma; (b) corresponding
reaction–diffusion pulses for ζ (solid lines) and ξ (dashed
lines)

A linear stability analysis of this set of equations reveals that the coupling between the hydrodynamics and
reaction–diffusion process has a profound influence on the liquid film. The free surface is linearly stable in the
absence of the Marangoni effect but its coupling to the linearly unstable reaction–diffusion system through the
Marangoni effect leads to its destabilization. For the parameter values examined here, the instability assumes the form
of a spatially periodic cellular pattern.

On the other hand, when the reaction–diffusion process in the absence of convection is linearly stable, in which
case there exist traveling waves in the form of fronts or pulses, there also exist traveling waves for the coupled
thin-film/excitable medium. Such waves take the form of fronts or pulses for the reaction–diffusion process and
pulses for the free surface.

Finally, there are a number of interesting questions related to the analysis presented here. For example, it would
be interesting to perform a stability analysis of the traveling waves computed here. Another related problem would
be the influence of the kinetic scheme on the type of hydrodynamic interfacial waves triggered by the Marangoni
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effect (e.g. a two-variable Oregonator model to describe the kinetics in Belousov–Zhabotinsky systems [44]). These
and other problems will be addressed in a future study.
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